Distributed Joint Source-Channel Coding for Relay Systems Exploiting Source-Relay Correlation and Source Memory

نویسندگان

  • Xiaobo Zhou
  • Meng Cheng
  • Khoirul Anwar
  • Tadashi Matsumoto
چکیده

In this article, we propose a distributed joint source-channel coding (DJSCC) technique that well exploits source-relay correlation as well as source memory structure simultaneously for transmitting binary Markov sources in a one-way relay system. The relay only extracts and forwards the source message to the destination, which implies imperfect decoding at the relay. The probability of errors occurring in the source-relay link can be regarded as source-relay correlation. The source-relay correlation can be estimated at the destination node and utilized in the iterative processing. In addition, the memory structure of the Markov source is also utilized at the destination. A modified version of the Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm is derived to exploit the memory structure of the Markov source. Extrinsic information transfer (EXIT) chart analysis is then performed to investigate convergence property of the proposed technique. Results of simulations conducted to evaluate the bit-error-rate (BER) performance and the EXIT chart analysis show that, by exploiting the source-relay correlation and source memory simultaneously, our proposed technique achieves significant performance gain, compared with the case where the correlation knowledge is not fully used. Introduction Wireless mesh and/or sensor networks having great number of low-power consuming wireless nodes (e.g., small relays and/or micro cameras) have attracted a lot of attention of the society, and a variety of its potential applications has been considered recently [1]. The fundamental challenge of wireless mesh and/or sensor networks is how energy-/spectrum-efficiently as well as reliably the multiple sources can transmit their originating information to the multiple destinations. However, such multi-terminal systems have two practical limitations: (1) wireless channel suffers from various impairments, such as interference, distortions and/or deep fading, (2) signal processing complexity as well as transmitting powers has to be as low as possible due to the power, bandwidth, and/or size restrictions of the wireless nodes. Cooperative communication techniques provide a potential solution to the problems described above, due *Correspondence: [email protected] 1School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan Full list of author information is available at the end of the article to its excellent transmit diversity for fading mitigation [2]. One simple form of cooperative wireless communications is a single relay system, which consists of one source, one relay and one destination. The role of the relay is to provide alternative communication route for transmission, hence improving the probability of successful signal reception of source information sequence at the destination. In this relay system, the information sent from the source and the relay nodes are correlated, which in this article is referred to as source-relay correlation. Furthermore, the information collected at the source node containsmemory structure, according to the dynamics that governs the temporal behavior of the originator (or sensing target). The source-relay correlation and the memory structure of the transmitted data can be regarded as redundant information which can be used for source compression and/or error correction in distributed joint source-channel coding (DJSCC). There are many excellent coding schemes which can achieve efficient node cooperative communications, such as [3,4], where decode-and-forward (DF) relay strategy is adopted and the source-relay link is assumed to be error © 2012 Zhou et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Zhou et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:260 Page 2 of 13 http://jwcn.eurasipjournals.com/content/2012/1/260 free. In practice, when the signal-to-noise ratio (SNR) of the source-relay link falls below certain threshold, successful decoding at relay may become impossible. Besides, to completely correct the errors at the relay, strong codes such as turbo codes or low density parity check (LDPC) codes with iterative decoding are required, which will impose heavy computational burden at the relay. As a result, several coding strategies assuming that the relay cannot always decode correctly the information from the source have been presented in [5-7]. Joint source-channel coding (JSCC) has been widely used to exploit the memory structure inherent within the source information sequence. In the majority of the approaches to JSCC design, variable-length code (VLC) is employed as source encoder and the implicit residual redundancy after source encoding is additionally used for error correction in the decoding process. Some related study can be found in [8-11]. Also, there are some literatures which focus on exploiting the memory structure of the source directly, e.g., some approaches of combining hidden Markov Model (HMM) or Markov chain (MC) with the turbo code design framework are presented in [12-14]. In the schemes mentioned above, the exploitation of the source-relay correlation and the source memory structure have been addressed separately. Not much attention has been paid to relay systems exploiting the source-relay correlation and the source memory simultaneously. A similar study can be found in [15], where the memory structure of the source is represented by a very simple model, bitflipping between the current information sequence and its previous counterpart, which is not reasonable in many practical scenarios. When the exploitation of the source memory having more generic structures, the problem of code design for relay systems exploiting jointly the sourcerelay correlation and the source memory structure is still open. In this article, we propose a new DJSCC scheme for transmitting binary Markov source in a one-way single relay system, based on [7,14]. The proposed technique makes efficient utilization of the source-relay correlation as well as the source memory structure simultaneously to achieve additional coding gain. The rest of this article is organized as follow. Section ‘System model’ introduces the system model. The proposed decoding algorithm is described in Section ‘Proposed decoding scheme’. Section ‘EXIT chart analysis’ shows the results of extrinsic information transfer (EXIT) chart analysis conducted to evaluate the convergence property of the proposed system. Section ‘Convergence analysis and BER performance evaluation’ shows the bit-error-rate (BER) performance of the system based on EXIT chart analysis. The simulation results for image transmission using the proposed technique is presented in Section ‘Application to image transmission’. Finally, conclusions are drawn in Section ‘Conclusion’ with some remarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Multiple-Access Relay Channels with Feedback via Two-way Relay Channel

In this study, we introduce a new two-way relay channel and obtain an inner bound and an outer bound for the discrete and memoryless multiple access relay channels with receiver-source feedback via two-way relay channel in which end nodes exchange signals by a relay node. And we extend these results to the Gaussian case. By numerical computing, we show that our inner bound is the same with o...

متن کامل

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC) in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the sym...

متن کامل

Hybrid Coding: An Interface for Joint Source-Channel Coding and Network Communication

A new approach to joint source–channel coding is presented in the context of communicating correlated sources over multiple access channels. Similar to the separation architecture, the joint source– channel coding system architecture in this approach is modular, whereby the source encoding and channel decoding operations are decoupled. However, unlike the separation architecture, the same codew...

متن کامل

Low-delay sensing and transmission

This thesis studies cooperative sensing and transmission in the context of wireless sensor networks (WSNs). We especially focus on two means of cooperative sensing and transmission, namely, distributed source coding and relaying. We consider systems where the usefulness of the measured data is dependent on how old the data is and we therefore need low-delay transmission schemes. At first sight,...

متن کامل

Whether and Where to Code in the Wireless Relay Channel

The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations, for minimal centralized control while maximizing the throughput. In energy-constrained systems, however, coding subgraphs should be chosen to minimize the number of coding nodes while main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012